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Abstract

This paper seeks to connect the literatures from artificial intelligence, economics,
and cognitive science to make the case that not only is the notion of bounded op-
timality from the AI literature the right goal for agent design, it can also serve as
a principled means for modeling boundedly rational agents in complex systems like
economic markets. While appealing, this goal leaves open two critical questions.
First, bounded optimality is defined over an expected set of problems the agent
might face and it is not obvious what criterion to use for expected problems. Sec-
ond, it will typically be impossible to design a provably boundedly optimal agent
even given a set of expected problems, because the agent design problem itself is
intractable. These problems become particularly important when agents must learn
from their environments. In order to deal with these questions, we may need to
abandon the formalism of mathematics and instead look towards the process of sci-
ence and engineering. I argue that it is critical to evaluate agents in terms of the
expected set of problems they would face if they were deployed in the real world, ei-
ther in software or in hardware, and the agent programs we use for modeling should
be the best known program for any given problem subject to the broader expected
set of problems the algorithm might be expected to solve – the algorithm we would
choose to use if we had to hand over control of our own behavior in that domain to
an artificial agent.
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1 Introduction

Human beings regularly make extremely complex decisions in a world filled
with uncertainty. For example, we decide which gas station to refuel at, and
whether to put money into a bank account or a retirement fund, with sur-
prisingly little effort. Designing algorithms for artificial agents in similar sit-
uations, however, has proven extremely difficult. Historically, research in ar-
tificial intelligence has focused on designing algorithms with the ability to
solve these problems in principle, given infinite computational power [Russell,
1997]. Many problems that arise in everyday decision-making are likely to be
impossible to solve perfectly given computational constraints, so this kind of
calculative rationality, as Russell calls it, is not a particularly interesting prac-
tical goal. In order to progress towards designing an intelligent system, we need
a better theory of decision-making and learning when rationality is bounded
by computational resource considerations. Not only is such a theory critical
to our understanding of the nature of intelligence, it could also be applied
to study interaction between agents in increasingly realistic models of social
and economic systems by serving as a replacement for the classical economic
theory of unbounded rationality. Russell [1997] discusses two possible theories,
metalevel rationality and bounded optimality. Russell and Norvig [2003] also
consider a more general notion of bounded rationality in the tradition of Her-
bert Simon’s (1955) satisficing. Bounded optimality is in many ways the most
appealing of these theories, since it strives to replace agents that always make
rational decisions with rational agent programs. Bounded optimality could
also be a more plausible model of how humans work. We know that human
beings do not make rational decisions, but it is possible that our brains have
evolved to become an optimal or near-optimal decision-making system for the
environments we inhabit.

One of the great attractions of bounded optimality is that it can serve both as
a definition of intelligence meeting the needs of research in AI and as a formal
model of decision-making to replace unbounded rationality. Unfortunately,
while bounded optimality might be the right goal to strive for in agent design,
achieving this goal, or even knowing whether it can be achieved, is difficult
when agents are uncertain about the world. This issue becomes particularly
important in the context of agents that are not fully informed about the
environment they are placed in, and who must learn how to act in a successful
manner. The question of what is meant by boundedly rational learning and
how it can be analyzed is a difficult one that is discussed in some detail below.

The broad plan of this paper is as follows.

• I start by considering various perspectives on bounded rationality. While
Russell [1997] and Parkes [1999] provide plenty of detail on most of the per-
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spectives related to agent design, I will consider in more detail the tradition
of bounded rationality research started by Herbert Simon with the notion
of satisficing, and continued in the program of fast and frugal heuristics by
Gerd Gigerenzer and others [Gigerenzer and Goldstein, 1996, Gigerenzer
and Selten, 2001, inter alia].

• After that, I move on to considering how the field of machine learning, and in
particular, reinforcement learning, needs to adapt in order to move towards
the goal of designing boundedly optimal agents for increasingly complex
domains.

• In the last major section, I discuss how a theory of boundedly optimal
agents may provide a compelling replacement for the unboundedly rational
agents of economic theory. The notion of bounded optimality can serve as a
principled approach to modeling complex systems and address many of the
criticisms of bounded rationality research found in the economics literature.

2 Bounded Rationality and Agent Design

The agent-based approach to AI involves designing agents that “do the right
thing” [Russell, 1997]. The “right thing” in this context means that agents
should take actions that maximize their expected utility (or probability of
achieving their goals). Ideally, an agent should be perfectly rational. Unfor-
tunately, there is really no such thing as a perfectly rational agent in the
world. As Russell [1997, pp. 6] says, “physical mechanisms take time to pro-
cess information and select actions, hence the behavior of real agents cannot
immediately reflect changes in the environment and will generally be subop-
timal.” Calculative rationality, the ability to compute the perfectly rational
action in principle, given sufficient time and computational resources, is not a
useful notion, because agents that act in the world have physical constraints
on when they need to choose their actions. We are left to contemplate other
options for agent design.

The heuristics and biases program made famous by Kahneman and Tversky
studies actual human behavior and how it deviates from the norms of rational
choice. This program is not in any way prescriptive, as it mainly focuses on
cataloging deviations from the presumed normative laws of classical decision
theory. Thus, this program does not provide any suitable definitions for intel-
ligence that we can work towards, although understanding human deviations
from decision-theoretic norms might prove informative in the design of good
algorithms, as is argued below.

Another approach from the literature of cognitive science is the use of “satis-
ficing” heuristics in the tradition of Simon [1955], who introduced the notion
that human decision-makers do not exhaustively search over the space of out-
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comes to choose the best decision, but instead stop as soon as they see an
outcome that is above some satisfactory threshold “aspiration level.” Conlisk
[1996] cites various papers in the economics literature that start from Simon’s
notion of bounded rationality, and claims that, within economics, “the spirit
of the idea is pervasive.” In cognitive science and psychology, Gigerenzer and
others have recently popularized the use of “fast and frugal” heuristics and
algorithms as the natural successor to satisficing. Gigerenzer and Goldstein
[1996] state their view of heuristics as being “ecologically rational” (capa-
ble of exploiting structures of information present in the environment) while
nevertheless violating classical norms of rationality. They have a program to
design computational models of such heuristics, which are “fast, frugal and
simple enough to operate effectively when time, knowledge, and computational
might are limited” while making it quite clear that they do not agree with
the view of heuristics as “imperfect versions of optimal statistical procedures
too complicated for ordinary minds to carry out” [Goldstein and Gigerenzer,
2002]. They reject the Kahneman-Tversky program because it maintains the
normative nature of classical decision theory.

It is interesting that in their 1997 paper, Gigerenzer and Goldstein held a sim-
ulated contest between a satisficing algorithm and “rational” inference proce-
dures, and found that the satisficing procedure matched or outperformed more
sophisticated statistical algorithms. The fact that a simple algorithm performs
very well on a possibly complex task is not surprising in itself, but what is
very clear is that if it can be expected to perform better than a sophisticated
statistical algorithm, it must either be a better inference procedure or have su-
perior prior information encoded within it in the context of the environment in
which it is tested. As agent designers, if we had to design an agent that solves
a given range of problems, and had access to the information that a satisficing
heuristic was the best known algorithm for that range of problems, it would
be silly not to use that algorithm in the agent, all else being equal. While I
will return to this issue below, the problem with fast and frugal heuristics as a
program for agent design is the loose definition of what constitutes a satisfac-
tory outcome, or of what kinds of decision-making methods are “ecologically
rational” in the language of Goldstein and Gigerenzer. How do we know that
one heuristic is better than another? What if our agent has to perform many
different tasks?

Russell proposes two other options for a goal for agent design – metalevel
rationality and bounded optimality. Metalevel rationality involves reasoning
about the costs of reasoning. An agent that is rational at the metalevel “selects
computations according to their expected utility” [Russell, 1997]. This is what
Conlisk [1996] refers to as deliberation cost, and both Russell and Conlisk
make the explicit connection to the analogous value of information. Conlisk
argues strongly for incorporating deliberation cost into optimization problems
that arise in economics, saying that human computation is a scarce resource,
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and economics is by definition the study of the allocation of scarce resources.
He suggests that instead of optimally solving an optimization problem P , a
decision-maker should solve an augmented problem F (P ) in which the cost
of deliberation is taken into account. The problem, as he realizes, is that it
is also costly to reason about F (P ), and, therefore, theoretically at least, one
should reason about F (F (P )), F (F (F (P ))), . . .. This infinite regress is almost
always ignored in the literature that does take deliberation cost into account,
assuming that F (P ) is, in some sense, a “good enough” approximation.

Economics is not alone in this myopic consideration of deliberation cost. In
the AI literature, the tradition of studying deliberation cost (or the essen-
tially equivalent concept which Russell calls the value of computation) as part
of solving a decision problem dates back to at least the work of Eric Horvitz
[1987], and almost all the algorithms that have been developed have used
myopically optimal metareasoning at the first level, or shown bounds in very
particular instances. The history of metalevel “rationality” in the AI literature
is more that of a useful tool for solving certain kinds of problems (especially
in the development of anytime algorithms) than as a formal specification for
intelligent agents. This is mostly because of the infinite regress problem de-
scribed above – as [Russell, 1997, page 10] writes (of the first metalevel, or the
problem F (P ) in Conlisk’s notation), “perfect rationality at the metalevel is
unattainable and calculative rationality at the metalevel is useless.”

This leaves us with Russell’s last, and most appealing, candidate – bounded
optimality, first defined by Horvitz [1987] as “the optimization of [utility] given
a set of assumptions about expected problems and constraints on resources.”
Russell [1997] says that bounded optimality involves stepping “outside the
agent” and specifying that the agent program be rational, rather than every
single agent decision. An agent’s decision procedure is bounded optimal if the
expected utility of an action selected by the procedure is at least as high as that
of the action selected by any decision procedure subject to the same resource
bounds in the same environment. Of course, we are now requiring a lot of the
agent designer, but that seems to make more sense as a one-time optimization
problem than requiring the same of the agent for every optimization problem
it faces. The problem with bounded optimality is that, for any reasonably
complex problem, it will prove incredibly hard to design a boundedly optimal
agent, and it might also be hard to prove the optimality of the agent program.
We have shifted the burden of rationality to the designer, but the burden still
exists.

Nevertheless, bounded optimality seems to be the right goal. If one agent
algorithm can be shown to perform better than another given the same beliefs
about the set of problems the agent may face and the same computational
resources, the first algorithm should be the one used. Of course, this can be
problematic because it is not clear where it must perform better. What if the
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prior beliefs of the agents are completely wrong? Again, the only solution is to
analyze this from the perspective of the agent designer. Rodney Brooks [1991]
argues that the real world is its own best model. While I do not endorse the
notion that the task of modeling by simplifying is therefore useless, I do think
we should hold boundedly optimal algorithms to the standard of reality. The
performance of algorithms should be tested on problems that are as realistic
as possible.

Let me use this for a quick foray into the broader question of what we should be
doing as artificial intelligence researchers when we design algorithms intended
to be boundedly optimal. The two points that [Brooks, 1991, page 140] makes
about the direction of AI research are (quoting directly):

• We must incrementally build up the capabilities of intelligent systems,
having complete systems at each step of the way and thus automatically
ensure that the pieces and their interfaces are valid.

• At each step we should build complete intelligent systems that we let loose
in the real world with real sensing and real action. Anything less provides
a candidate with which we can delude ourselves.

Brooks carries this forward to argue for robotics and immersion in the real
physical world as the most important research program in AI. Oren Etzioni
[1993] argues against this view, arguing that the creation of so-called soft-
bots, agents embedded in software, is perhaps a more useful focus for AI
research, since it allows us as researchers to tackle high-level issues more im-
mediately without getting sidetracked. The concept of designing boundedly
optimal agents is not necessarily tied to either of these research directions.
While the later focus of this paper on modeling complex systems falls more
in line with Etzioni’s arguments than Brooks’, the basic goal of agent design
is the same in both areas, and both are useful programs of research in AI.
This goal is to solve the engineering problem of creating an agent that will
be optimally successful in the environments in which we, as agent designers,
expect it to be placed, given the resources available to the agent. The agent
could be a software agent attempting to trade optimally in an online market,
or it could be a robot attempting to navigate many different kinds of terrain,
or almost anything else one can think of.

One critical caveat needs to be mentioned – eventually, we would like to create
agents that are generally intelligent across a range of domains and problems
(holding a conversation, ordering food from a restaurant, buying a plane ticket,
and so on). These agents will have limited computational resources, and there-
fore, they might not be able to spend a lot of these resources on any one task.
They will need to be boundedly optimal in the context of all the problems
they have to solve, and therefore, they might have to be designed so that they
would not be boundedly optimal for any one of those problems given the same
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computational resources. This caveat will also apply to modeling economic
and social systems. We cannot assume too much in the way of computational
resources or exclusivity of access to these resources when we model using the
methodology proposed here. In fact, suppose the human brain itself is bound-
edly optimal for the environment it inhabits with respect to some kind of
evolutionary survival utility function (or fitness function). Then the kinds of
deviations we see from decision-theoretic norms could be explained by the fact
that even if an algorithm were not optimal for a particular class of problems, if
the agent could perhaps face a significantly larger class of problems, or a bet-
ter inference procedure were significantly more costly, it might be boundedly
optimal to program the agent with that algorithm since this would save valu-
able resources that could be devoted to other problems. In fact, some of the
algorithms described as “fast and frugal heuristics” [Gigerenzer and Goldstein,
1996, Goldstein and Gigerenzer, 2002] may well be bounded optimal in the
larger context of the human brain. Some evidence of how understanding the
heuristics we use can be important in the context of algorithm development
can be seen in the FoRR architecture which leads to, for example, an effective
navigation algorithm [Epstein, 1998], and in the development of a model for
how humans effectively solve the traveling salesperson problem Best [2004].

3 Bounded Optimality and Learning

In the tradition of economics and decision theory, rational learning is un-
derstood to mean Bayesian updating of beliefs based on observations. This
definition finesses two major problems we encounter in agent design.

• It shifts responsibility onto the designer’s beliefs about the set of problems
the agent might face. It could be very hard to design an appropriate prior
for an agent that must make many different kinds of decisions in the world.

• Even if the designer’s prior beliefs are correct, full Bayesian learning is com-
putationally infeasible in all but the simplest cases. There may be no single
algorithm that provably always outperforms others in selecting optimal ac-
tions within the specified computational limits, or finding such an algorithm
may be hard.

First, let us consider a simple illustrative problem that is an extension of
the classical supervised learning framework to a situation where a predictive
agent receives utility from making correct predictions while her actions have
no influence on the environment. Later we will turn to the even more difficult
case in which the agent’s actions impact its environment.
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3.1 Learning to Predict:

Consider a situation in which an agent, call her Mary, receives as input a real-
valued vector X at each time step, and has to predict Y , where Y is known
to be a (probabilistic or noisy) function of X. The two standard cases are
regression, where Y is real valued, or classification, where Y takes on one of a
few specific different values. For simplicity, consider the binary classification
case where Y ∈ {0, 1}. Suppose Mary’s task is to predict whether Y will be 0
or 1. Immediately after she makes her prediction, she is informed of the true
value of Y and receives utility 1 for making the correct prediction, and 0 for
making the wrong prediction. Suppose Mary knows that she will see 100 such
examples, and her goal is to maximize the utility she receives over the course
of this game. How should she play? The theory of unbounded rationality and
“rational learning” as used by economics would say that Mary starts with
a prior Pr(Y |X), makes her decision based on the particular instantiation
X = x that she sees (predicting Y = 1 if Pr(Y = 1|X = x) > Pr(Y = 0|X =
x) and Y = 0 otherwise), and then updates her estimate Pr(Y |X) using
Bayes’ rule after the true value of Y is revealed to her. Unfortunately, even
ignoring the issue of how to specify a good prior, performing the full Bayesian
updates at each step is computationally prohibitive. This brings us into the
sphere of bounded optimality. What method would achieve as high a utility
as possible for Mary given reasonable computational resources? This question
does not have a definite answer, even if we clearly specify the exact resource
constraints on the agent. Many different algorithms for the supervised learning
problem, both online and offline, could be applied in this situation. Mary could
memorize all the examples she sees and use a support vector machine to learn
a classifier after each step (even then, she would need to make choices about
kernels and parameters), or she could use an ensemble classifier like boosted
decision trees, or an online algorithm like the Widrow-Hoff procedure, but
there is no one algorithm that is clearly better than the others in terms of
expected utility across domains.

3.2 Learning How to Act

An agent that acts in the world gains utility from the actions it takes and
also learns about the world through the effects of its actions. It must balance
exploration (taking myopically suboptimal actions in order to learn more) with
exploitation of what it has learned. Perfectly rational Bayesian learning is only
possible for certain families of prior beliefs and extremely simple problems. The
discovery of an optimal algorithm that balances exploration and exploitation
for even the “simple” case of the multi-armed bandit problem was hailed as
almost miraculous when it was first published.
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The multi-armed bandit problem [Berry and Fristedt, 1985, Gittins and Jones,
1974, inter alia] is often considered the paradigmatic exploration-exploitation
problem, because the tradeoff can be expressed simply. A single agent must
choose which arm of a slot machine to pull at each time step, knowing that
the arms may have different reward distributions. The goal of the agent is to
maximize the discounted sum of payoffs. It turns out there is actually an opti-
mal way to play the multi-armed bandit under the assumptions of stationary
reward distributions and geometric discounting [Gittins and Jones, 1974]. The
optimal action at any time is to play the arm with the highest Gittins index,
a single number associated with each arm that is based solely on the history
of rewards associated with that arm. The Gittins index is reasonably easy to
compute for certain families of reward distributions, but can be difficult in
other circumstances.

The multi-armed bandit is an easy problem, though, compared to the kinds
of problems faced by agents in realistic environments. For example, it is hard
to define “optimality” in a nonstochastic bandit problem, where the reward
for each arm at each time period may have been picked by an adversary [Auer
et al., 2002], or a nonstationary case, where the reward distribution for each
arm may change over time. Or consider the case where there are multiple
people playing the bandit and the arms of the bandit themselves have agency
and must try to maximize their own reward, which is dependent on who pulls
them in each period (the “two-sided” bandit problem [Das and Kamenica,
2005]). Even solving problems with a Markovian structure can be extremely
hard, especially when they are not fully observable.

3.3 Evaluating Learning Algorithms

While a whole line of literature stresses the importance of resource bounds
in understanding computational limitations on rationality in many decision-
making environments, the problem becomes particularly severe when the agent
does not have a perfect model of its environment and must learn this model
through experience. The scenarios examined above raise two fundamental
questions for the field of machine learning which parallel those in the introduc-
tory discussion. First, if we are seeking to design a boundedly optimal learning
algorithm, what should constitute the expected set of problems against which
it is evaluated? Second, even given such a set of problems, what should we
do if we cannot find a boundedly optimal algorithm, or prove its optimality?
I will defer discussion of the second question to the next section, because it
will be important for understanding how we can use the notion of bounded
optimality in modeling complex systems.

Of course it is impossible to definitively answer these questions, but it is impor-
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tant to keep them in mind as researchers. It is critical to evaluate algorithms
from the perspective of performance in the real world, given the expected set
of problems an agent would face if it were deployed in the world, either phys-
ically or as a software agent. While there is of course value to the traditional
computer science program of proving worst case bounds and evaluating al-
gorithms on arbitrary problem spaces, at some stage (not necessarily at the
very initial stage of development) algorithms that are designed to be parts of
intelligent agents must face the discipline of the real world.

The problem of learning how to act when an agent gets rewards from its in-
teractions with the environment has been studied extensively (especially in
the Markovian framework) in the reinforcement learning and neurodynamic
programming literatures. However, with some exceptions (see, for example,
[Kearns and Singh, 2002]), analysis has typically focused on the ability of al-
gorithms to eventually learn the true underlying model, and hence the asymp-
totically optimal decision procedure, and not on the expected utilities achieved
by algorithms in potentially limited interactions with the environment. This
expected utility viewpoint becomes especially important in the true agent de-
sign problem, because our goal must be to design agents that can take the
actual costs of exploration and learning into account. An agent does not have
access to an offline model of its environment so that it can improve its perfor-
mance before acting in the world. The agent must be able to make tradeoffs
in an online manner, where failure or poor performance immediately impacts
the agent negatively. It is therefore critical from the perspective of AI research
to attack problems of learning how to act from the perspective of expected
utility received in the world, especially keeping in mind the real costs of ex-
ploration. It will probably prove natural to adopt a Bayesian perspective in
analyzing this issue. To quote Berry and Fristedt [1985], in their discussion of
bandit problems, “[it] is not that researchers in bandit problems tend to be
‘Bayesians’; rather, Bayes’s theorem provides a convenient mathematical for-
malism that allows for adaptive learning, and so is an ideal tool in sequential
decision problems.”

4 Bounded Optimality and Modeling Complex Systems

Historically, research on the outcomes of interaction between self-interested
optimizing agents has been the domain of economic theory. Economists place
a high value on analytical tractability and model parsimony. They tend to
simplify models until agent behavior and interactions can be reduced to a set
of equations that provide intuition to the person analyzing the system. In the
words of Brian Arthur [1999], “conventional economic theory chooses not to
study the unfolding of the patterns its agents create, but rather to simplify
its questions in order to seek analytical solutions.” These simplified questions
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have no need of the notion of bounded optimality, because the decision (and
learning) problems faced by agents are “easy” in the sense that they can be
solved efficiently without using excessive computational resources. If we move
to more complicated models, we will necessarily have to examine more difficult
agent decision problems, and we need to think about agent decision-making
differently. In a seminal paper, Herbert Simon [1955] identified the problem:

Broadly stated, the task is to replace the global rationality of economic man
with a kind of rational behavior that is compatible with the access to in-
formation and the computational capacities that are actually possessed by
organisms, including man, in the kinds of environments in which such or-
ganisms exist. One is tempted to turn to the literature of psychology for the
answer. Psychologists have certainly been concerned with rational behav-
ior, particularly in their interest in learning phenomena. But the distance
is so great between our present psychological knowledge of the learning and
choice processes and the kinds of knowledge needed for economic and ad-
ministrative theory that a marking stone placed halfway between might help
travelers from both directions to keep to their courses.

How about bounded optimality as a milestone? With the increasing availabil-
ity of huge amounts of computational power on every researcher’s desktop,
we can now analyze models using computational tools, and so it is no longer
absolutely critical to simplify models to the extreme. This means we can study
models in which agent decision problems are no longer easy and computational
resource constraints must be taken into account. The literature in the broad
field of “complexity science,” and particularly econophysics, with its focus on
financial markets, has already taken the lead in this direction, and Farmer
et al. [2005] provide an overview of research from that perspective, while rais-
ing many of the same questions about modeling methodology that this paper
seeks to answer. But while econophysics typically seeks to build up from the
opposite extreme, random or near-random agent behavior, while the dynam-
ics of interaction remain complex, the approach from AI should consider more
complex models of agent decision-making. The ability to study more com-
plex models is particularly important, as noted above, in circumstances where
agents are not perfectly informed of the structure or the parameters of the
environments in which they are placed. How should this kind of modeling
proceed so as not to fall into the traps that have made bounded rationality
research anathema to many mainstream economists?

John Conlisk [1996] both raises and answers many of the criticisms of bounded
rationality research. Perhaps the most important and frequent such criticism
is that the decision procedures modeled by those conducting the research are
ad hoc. Conlisk summarizes this argument as follows “Without the discipline
of optimizing models, economic theory would degenerate into a hodge podge of
ad hoc hypotheses which cover every fact but which lack overall cohesion and
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scientific refutability” [pp. 685]. He goes on to say that discipline comes from
good scientific practice, not strict adherence to a particular approach, and
suggests that modeling bounded rationality based on deliberation cost would
enforce a certain discipline. Conlisk’s preferred approach is the equivalent of
metalevel rationality, but I would venture to propose that bounded optimality
might be both a better model for the purpose of enforcing discipline (given
the infinite regress problem) and a more satisfying model of the processes of
actual decision-makers in the world. Maybe humans and economic firms do
take the best actions available, given their capacities for reasoning about these
actions and knowledge of the environment.

However, from the discussion above, it is clear that very often we will not know
if an agent algorithm is in fact boundedly optimal or not. Does this invalidate
the idea that bounded optimality can serve as a principled replacement for
unbounded rationality in economic models? I would argue that this is not
the case, but we have to turn to good practice in science and engineering
rather than relying on the formalism of mathematics. We should strive to
engineer good algorithms for complicated problems, attempting to be rational
ourselves in the design of these algorithms. The choice of how to model an
agent that is part of a complex system should be made by using the same agent
that we would use if we had to engineer an agent for maximally successful
performance in that system given our beliefs about the system. Hopefully
we could eventually reach more and more realistic models, benefiting both
algorithm development and hence the eventual goal of building an intelligent
agent as well as our understanding of complex social and economic systems.
Let us examine a case study.

4.1 Learning in Economic Models

Many economic models already account for learning in an explicit manner.
There is nothing particularly novel about suggesting that agents learn from
the environment around them. In an interview with Thomas Sargent, Evans
and Honkapohja [2005] explore many of the issues related to how the program
called “learning theory” originated in the macroeconomics literature. Let me
briefly summarize Sargent’s overview of the development of this literature in
order to draw a parallel to the overall argument of this paper.

Learning theory in macroeconomics originated in some ways as a response to
rational expectations economics. In the rational expectations literature, there
exists what Sargent calls a “communism of models” in which all the agents
share the same model of the world, and this is the true model, or “God’s
model”. 1 There is no place for different beliefs in rational expectations the-

1 Sargent uses the term “model” to mean probability distributions over all the
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ory. Margaret Bray and David Kreps started a research program to show
what would happen if you endowed agents with different beliefs, learning al-
gorithms, and data on what had happened in the past. Agents should continue
to update their models and then optimize based on their current beliefs. The
interesting outcome was that in many cases, the only possible outcomes of
the system were close to rational expectations equilibria. In some cases, the
learning models helped to eliminate possible rational expectations equilibria
because they could not be reached through the learning dynamic. Further
research along these lines has started to examine what happens to equilib-
ria when agents can have model uncertainty, not just parameter uncertainty.
Along with equilibrium selection, the theory has also contributed much by
helping to understand the rates of reaching equilibrium in different problems
and in characterizing the situations where the system dynamics show serious
deviations from expected equilibrium behavior. Similar research has now be-
come an integral part of the game theory literature as well [Fudenberg and
Levine, 1998].

How does this relate to bounded rationality? Learning behavior is not nec-
essarily “irrational,” so why would we have to think of it any differently?
Sargent echoes this manner of thinking in talking about “robust control” (in
which an agent explicitly has doubts about her model of the world and must
take these into account in decision-making) when he says that it is not a type
of bounded rationality because “[the agent’s] fear of model misspecification is
out in the open” which makes her smarter than a rational expectations agent
[Evans and Honkapohja, 2005]. The problem that arises with this belief is that
it is impossible to do provably optimal learning in a model in which there is
any kind of complexity to the agents’ beliefs. We must take computational re-
source constraints into account, and agents cannot be unboundedly rational.
It becomes very hard to even define rationality meaningfully in most of these
situations. To quote Horvitz [1987], “[Constraints in resources] can transform
a non-normative technique into the ‘preferred choice’ of devout Bayesians,
and can convert the strictest formalists into admirers of heuristics.” We have
to think about what constitutes a “good” learning algorithm and whether it
makes sense (both from the agent-design and the modeling perspectives) to
endow the agent with that algorithm. The learning literature in economics typ-
ically focuses on very simple methods of least-squares learning which might
not be the choice we would make as agent designers if we had to write an
algorithm to participate in the world we are modeling.

inputs and outputs of the larger economic model.
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5 Conclusion

This paper attempts to link the literatures of artificial intelligence, economics,
and cognitive science so that those familiar with any of these disciplines will be
able to see the parallels and connections easily. I have argued for a particular
methodology for both designing artificial agents and for modeling agents that
are participants in complex systems like economic markets. This methodology
is to start by assuming bounded optimality, or the rationality of the agent
program, as the goal in both cases. Since this goal needs to be defined in
terms of the expected set of problems an agent will face, we should design
agents that would perform successfully in the real world, and expect that the
set of problems the agent will face is the set of problems it would encounter in
the world. Finally, we will not necessarily ever know or be able to show that an
agent we have designed is boundedly optimal. We might have to replace our
desire for proving that an agent is boundedly optimal with a more scientific
or engineering based approach, in which we try to design the best algorithm
so far developed for a problem given the computational and other constraints
on the algorithm.

To conclude with an example, suppose we were to design an agent that took
care of our finances. We would want it to successfully trade stocks and bonds,
perhaps even foreign exchange, while at the same time taking care of more
mundane tasks like maintaining bank accounts and paying mortgages. It is not
far-fetched to think that we will in the near future be able to design an agent
that is close to boundedly optimal for this problem. Eventually we might be
able to use insights from the design of this financial agent to build a truly
intelligent agent, but in the meanwhile, if we are happy deploying the agent
to take care of our finances, we should use it as our model of an economic
decision-making agent when we model financial markets.
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